

ェネルギー総合工学研究所における 水素拡散、燃焼基礎物性の研究に ついて

2008年7月30日 (財)エネルギー総合工学研究所 プロジェクト試験研究部 石本祐樹 ishimoto@iae.or.jp Tel 03-3508-8894

Copyright; 2008 IAE. All rights reserved.

E The Institute of Applied Energy

- 1. 水素の物性
- 2.水素安全研究の流れ(IAE)
- 3.研究の背景と動機
- 4. 半閉鎖空間における水素の拡散・燃焼実験
- 5. ダクトで換気される閉鎖空間における水素の拡散・燃焼実験

水素の特性

	水素	メタン	プロパン	ガソリン	水素の特性
拡散係数(空気中) [cm²/s] (1atm, 20℃)	0. 61	0. 16	0. 12	0.05 (ガス状)	拡散しやすい。 小孔から透過しやすい。
金属材料を脆化	あり	なし	なし	なし	金属をもろく、割れやす くする。
最小着火 エネルギー (mJ)	0. 02	0. 29	0. 26	0. 24	着火しやすい
燃焼範囲 (下限ー上限)[vol%]	4.1-75	5.3-15	2.1-10	1.0-7.8	燃焼可能濃度範囲が広い
熱放射 (輻射率 ε)	0. 04 ~ 0. 25	0. 15 ~ 0. 35	ガンリン並	0. 3~0. 4	熱放射による被害や類焼 は少ない
最大燃焼速度 [cm/s]	346	43. 0	47. 2	42. 0	爆風圧が大きい。ジェッ ト火炎が保炎しやすい
燃焼熱 [MJ/Nm ³] 真発熱量	10. 77	35. 9	93. 6	-	熱量を確保するのに 高圧を要す。

Copyright; 2008 IAE. All rights reserved.

素エネルギー戦略会議研究分科会

背景と動機

- -定置用燃料電池、燃料電池自動車、水素インフラの導入普及のために 様々な研究開発が精力的に行われている。
- 水素エネルギーの導入普及のためには安全確保が不可欠である。
- 開放空間での水素の爆発実験を行うことで、スケール効果等が確認 できた。
- 同じ漏えい条件でも、着火した場合の爆風圧は、開放空間より閉鎖 空間のほうが大きくなると考えられる。
- ダクト状の半閉鎖空間、水素を使用する空間を模擬した閉鎖空間に おける水素の漏えい・拡散・着火実験を実施した。

ダクト

opyright; 2008 IAE. All rights reserved.

The Institute of Applied Energy

閉鎖空間

半閉鎖空間における水素の拡散・燃焼実験

実験設備

トンネル内での水素漏洩後に着火する事故を想定。

・1000ms後から連続(15s, 15mJ, 60Hz)

Copyright; 2008 IAE. All rights reserved.

計測器

その他:可視・赤外カメラ

Copyright; 2008 IAE. All rights reserved.

E The Institute of Applied Energy

水素濃度測定

サンプリング

- サンプルボトルは実験前に真空引き
- 3秒間ガスを採集する
- 1箇所につき3つのボトルを設置

- 実験後に水素濃度測定
- 全圧と分圧を測定

Copyright; 2008 IAE. All rights reserved.

E The Institute of Applied Energy

E The Institute of Applied Energy

(2) 漏えい・拡散・燃焼実験

実験シナリオ 着火時刻までに搭載・積載した水素の70%が漏洩

種類	タンク 容量 (m ³ NPT)	初期 圧力 (MPa)	漏洩部 直径 (mm)	漏洩 時間 (s)	漏洩 水素量 (m ³ NPT)
燃料電池自動車	60	35	5	15. 2	42
燃料電池バス	300	35	5	75. 9	210
輸送カードル (1 本)	140	20	10	15. 5	98
輸送カードル (20本)	3000	20	5	1329	2100

E The Institute of Applied Energy

実機から実験設備への変換のためのスケール則

実機と実験設備で、水素濃度分布が相似になるようにパラメータを設定。

1. フルード数が等しい。

2. 断面を通過する水素流量と放出水素の比が等しい。

3. (1), (2) 式および濃度が等しい ことから水素流量の比が求まる。

4. 経過時間の比 t_m/t_p=(L_m/U_m) / (L_p/U_p) =(L_m/L_p)^{0.5}

- U: 換気風速, γ: 密度比 (H2/air)
- C:水素濃度,
- L: 特性長さ,Q: 水素放出速度
- p: 実機 , m: 実験設備

Copyright; 2008 IAE. All rights reserved.

Copyright; 2008 IAE. All rights reserved.

E The Institute of Applied Energy

<u>TEST HTB-1</u> 換気0.21m/s、障害物なし→着火せず

The Institute of Applied Energy

Copyright; 2008 IAE. All rights reserved.

Copyright; 2008 IAE. All rights reserved.

- -同じ漏えい条件でも、着火した場合の爆風圧は、開放空間より 閉鎖空間のほうが大きくなると考えられる。
- 閉鎖空間では、漏えいした場合においても水素濃度を着火下限 界以下にするために、強制換気が要求されると考えられる。
- 閉鎖空間において、水素漏えい量と換気量が水素濃度に与える 影響を調べることが必要。
- 閉鎖空間で水素を使用・貯蔵する場合に必要な換気速度を見積 もるための基礎データとして実験を実施。

実験設備

- 鋼鉄製

- 水素ガスが漏れないよう隙間には樹脂を充填
- 可視・赤外カメラでの計測のため、正面は7.6ミクロンのポリエ チレンシートで覆っている。

E The Institute of Applied Energy

実験設備内部

- 水素放出ノズルは床面中央に設置
- 水素ガスは天井に向って放出。
- 着火した際に発生する圧力は、ピエゾ式圧力計が壁面と同じ高さに埋め込まれている。

- 9箇所でガス採取を実施。
- 高速応答の熱電対は、火炎伝播速度の計 測に使用。
- -ノズルの近傍にも点火用モジュールを設 置

Copyright; 2008 IAE. All rights reserved.

実験設備の断面図(概略)

- 実験中は軸上に計測位置を固定し、ダクト内の風速分布は相似であるとして換気風量を評価した。

実験手順

- 水素の放出前に換気量を測定
- 水素の放出は一定流量
- 天井付近9箇所の水素濃度を3回測定
- -水素濃度測定用のガスサンプリング後
- -水素ガスは最後のスパークが起動した後に停止。

Copyright; 2008 IAE. All rights reserved.

実験パラメータ領域

水素放出量と換気量

それぞれの実験で、水素放出量と換気量は時間的にほぼ一定。

Copyright; 2008 IAE. All rights reserved.

火炎伝播速度は、9.3 m/sから13.7 m/sと若干ではあるが加速された。

The Institute of Applied Energy

まとめ(1/2)

●円筒状半閉鎖空間における水素漏洩・拡散・燃焼実験

(1) 水素/空気均一混合系

- ・水素/空気混合気を、ダクト中央に設置したテント(容積:37m³) 内に保持し、電気スパークで点火、爆燃させた。
- ・爆風圧はダクト端まで減衰することなく伝播し、発生圧力は水素 濃度に大きく依存し、混合気中での火炎伝播速度も開放空間の場 合より高かった。

(2) 漏えい・拡散・燃焼実験

- FCV, FCBus, 輸送用カードルからの水素ガス漏洩を想定し、実験 を実施した。
- ・いずれの条件でもダクト内水素濃度は10%以下であり、電気ス パークで着火しないか、着火した場合でも最大過圧が約0.25kPaで あった。
- ・換気風により水素濃度は低減できたが、漏洩直後にダクト全体の 濃度を低減するには、大きな換気風速が必要であることが示唆された。

Copyright; 2008 IAE. All rights reserved.

まとめ(2/2)

●閉鎖空間における水素の拡散・燃焼実験

- ・ダクトによって強制的に給排気される閉鎖空間において、水素流量、換気量をパラメータとした水素の拡散挙動、および燃焼挙動の把握を目的に実験を行なった。
- ・体積60m³の閉鎖空間において、水素放出量(0.002 m³/s~0.02 m³/s)と換気量(0.1 m³/s~0.4 m³/s)をパラメータとした。
- ・今回の実験条件の範囲では、実験中の最大の水素濃度は、水素放 出量と換気量の比である無次元化漏えい量に比例した。
- ・本実験の条件内では、想定される水素漏えい量に対する必要な換気量が求められる。

ご清聴ありがとうございました。

この研究はNEDO殿の委託「水素安全利用等基盤技術開発」「水素社会構築共通基盤整備事業」により行ったものです。

Copyright; 2008 IAE. All rights reserved.

E The Institute of Applied Energy