室内における漏洩水素の 流れ解析

福岡水素エネルギー戦略会議 平成20年度研究分科会 水素燃焼・安全評価に関する検討分科会 シミュレーション研究分科会(7月30日)

> 月川久義 西部ガス㈱総合研究所 九州大学知能機械システム社会人博士課程2年

発表内容

- 水素拡散シミュレーションの目的
- Hallway Model の解析について
- 天井モデル について
- ダクトモデル について
- まとめ

水素拡散シミュレーションの目的

水素を安全に使用するには 漏洩した水素の流動の把握が必要

- 設備毎に実験で確認するのは安全、コスト面から困難。
- 現実的にはCFDが有効な手段。
- 設備利用者自身が手持ちのCFDコードで解析出来れば、水素社会の実現に大いに寄与する。

水素の流動を把握すると

• 水素センサーは何処に設置するのが適切か。

• 漏洩した水素が可燃性範囲に入る領域は何 処か。

水素が漏洩してから、対応するのにどの程度 の時間的余裕があるか。

Hallway Model の概要図

Table 1 The details of the Hallway Model

	X(m)	Y(m)	Z(m)
Domain size	2.9	0.74	1.22
Sensor 1 location	0.15	0.14	0.15
Sensor 2 location	0.15	0.52	1.01
Sensor 3 location	2.68	0.14	1.01
Sensor 4 location	2.68	0.52	0.15
Roof vent location	2.6	0.22	1.22
Roof vent size	0.15	0.3	0.0
Door vent location	2.9	0.22	0.15
Door vent size	0.0	0.3	0.15
Hydrogen inlet location	0.15	0.22	0.0
Hydrogen inlet size	0.15	0.3	0.0

Hydrogen leak rate:57L/min; leak duration:600seconds

井上先生の実験(全景)

Hydrogen Inlet 部

気体熱伝導式水素センサー

寸法:直径1cm 高さ3cm

Hallway Model 解析の始まり

- (1) Michael R. Swain, Eric S. Grilliot and Matthew N. Swain; Risks incurred by hydrogen escaping from containers and conduits. NREL/CP-570-25315. Proceedings of the 1998 U.S. DOE Hydrogen Program Review.
- (2) Vladimir AGARANT, Zhong CHENG and Andrei TCHOUVELEV; CFD modeling of hydrogen releases and dispersion in hydrogen energy station, Proceedings of the 15th World Hydrogen Energy Conference, 2004.

解析は定常性を示す 実験は定常性を有するのか?

非定常性を最初に示した解析 前田さん 有限要素法 初出2004年

松浦さんの解析

- 出典:部分開放空間における水素拡散挙動に関する研究 松浦一雄,金山寛,月川久義,井上雅弘水素エネルギーシステム;2006 Vol. 31, No. 2 pp.50-57
- 計算コード: CFD-ACE+
- 解法:圧縮性流体の低マッハ数近似
- 乱流モデル:標準k- モデル
- Inlet Vent, Door Vent 近傍の速度勾配の大きい 部分の格子を細分化 格子点数:約3万
- 自作のコードでSimplest法、スタガードガード格子 の有効性の再確認

松浦さん

はSwainの実験

水頭圧設定の境界条件の工夫松浦さん

ADVENTURE s-Flow

• 大規模解析に適した、先進の有限要素法 非圧縮性熱流体解析コード

佐藤大吾さんの解析 櫻木理さんの解析

• 非圧縮性流れとして境界条件を検討

非定常水素拡散問題

4ヵ所の濃度センサーに見立てた節点における濃度[vol%]の時刻歴を実験データ(*)と比較し、最終的に新しい解析手法を確立することを目指す

B.C.

Hydrogen inlet部 u = v = 0.0, w = 0.02 [m/s] C=6.94 [mass%]

Door vent部

流速:自然境界 C = 0.0 [mass%]

Roof vent部

流速,濃度とも自然境界

壁面

u = v = w = 0.0 [m/s]

濃度:自然境界

(*)提供元: 工学研究院地球資源システム工学部門 井上雅弘先生

解析結果 △*t*=3.0[s] センサー2での濃度時刻歴

解析結果 △*t*=3.0[s] センサー1での濃度時刻歴

櫻木理さんの解析

・出典:ブシネスク近似のアナロジーによる水 素拡散の有限要素シミュレーション 金山寛, 月川久義, 櫻木理 2008年3月19日 日本 機械学会 九州支部 第61期総会・講演会

- プシネスク近似 浮力 f = Tg
 ここで : 体積膨張率 T:温度
 浮力 f = -13.4Cg
- C:水素の重量分率 g:重力

境界条件

Roof vent 部について

流れ場:
$$\sum_{i=1}^{3} \sigma_{ij} n_j = 0$$
 $[\text{m}^2/\text{s}^2]$

濃度 :
$$a \frac{\partial C}{\partial n} = 0$$
 [m/s]

壁面,床,天井部について

流れ場: $u_x = u_y = u_z = 0$ [m/s]

| 濃度 :
$$a\frac{\partial C}{\partial n} = 0$$
 [m/s]

Hydrogen inlet 部について

流れ場: $u_x = 0, u_y = 0, u_z = 0.02$ [m/s]

濃度 : C = 100/14.4 = 6.94 [mass%]

質量流量保存 体積濃度 約52% 相当

Door vent 部について

流れ場:
$$\sum_{i=1}^{3} \sigma_{ij} n_j = 0$$
 $[\text{m}^2/\text{s}^2]$

|濃度 :
$$C = 0$$
 [mass%]

物性值

$$|\mathbf{g} = (0, 0, -9.8)$$
 $[\text{m/s}^2]$

$$\beta = 13.4$$

$$v = 1.05 \times 10^{-4}$$
 [m²/s]

$$a = 6.1 \times 10^{-5}$$
 [m²/s]

解析条件

メッシュ

要素数: 165,434

節点数: 235,245

自由度: 870,447

ソルバー

計算機

BiCGSTAB(L) (L=4)

ILU前処理 (加速係数:1.05)

収束条件:相対残差<10-6

メッシュ図

時間刻み:

$$\Delta t = 0.5, 1.0[s]$$

初期条件:
$$u_x = u_y = u_z = 0$$

$$C = 0$$

各センサー部における水素濃度の推移

- · Sensor2,3 おおよそ50~100秒で定常状態に達する
- ・0~50秒でSensor2の振動が激しくピーク値を持つ
- · Sensor1 60,80,240秒付近で非常に高いピーク値

CFD解析手法 月川

- 計算コード: PHOENICS
- 解法: SIMPLEST
- 格子: 構造格子 スタッガード格子
- 空間差分近似: ハイブリッド法 1次風上差分と中心差分の組合せ
- 時間発展: 後退オイラー法 時間刻み0.5sec
- 乱流モデル: LVEL(0方程式モデル)
- 浮力: 密度差 -(_{air})g

保存式

$$\frac{\partial}{\partial t}(\rho\Phi) + div(\rho\nu\Phi) = div(\Gamma_{\Phi}grad\Phi) + S_{\Phi}$$

- 輸送変数 は、速度成分、全エンタルピー、
 化学種の質量分率、k- モデルの乱流エネルギー、
 乱流エネルギーの散逸率、等
- 拡散係数
- ソース項 S 浮力等
- 物性値はChemkin サブルーチンを使用

Hallway内部の格子(セル)分割

 $77 \times 20 \times 45 = 69,300$

Hydrogen Inlet (Z=-2.5cm)と床(Z=0.0) の 間を2セル分割

CFDと実験は整合する有効な手法

格子のサイズの影響 5cm以上では定常解となる

時間刻みの影響2秒以上では解が鈍る。佐藤さんの3秒との違いは?

乱流モデルの比較(センサー2)

天井を傾斜させると、水素の排出 が促進される 5度傾斜させた

傾斜の効果は水素濃度からは不明

CFDでDoor Vent の流速を求めると、 速くなっている 換気性能が向上

5度傾斜の50秒の水素濃度(%) 白抜き部は水素濃度4%以上の範囲

Time 50.00000 s Probe value 2.429536 Average value 0.732357

LVEL +5.0deg 3.75cm Z3cm time step=0.5se

5度傾斜の100秒の水素濃度(%)白抜き部は水素濃度16%以上の範囲

LVEL +5.0deg 3.75cm Z3cm time step=0.5se

Time 100.0000 s Probe value 3.709719 Average value 1.211061

天井モデルの写真

水素流量 48L/min 天井高さ1mの 天井面(センサA)水素濃度実験結果

天井モデルの格子(113×113×63)

CFD解析が高濃度

ダクトモデル実験装置写真

特徴的な実験結果

- 空気の流速が遅い場合、水素は空気の入り 口側に逆流する
- 水素流入位置の上流10cmのセンサーが 5cmのセンサーより高い水素濃度となる

実験結果の1例(水素流量10L/分) 水素センサーの測定レンジ10%の影響あり

水素流量:10L/min 風速:0.2m/S 格子 265×49×29 時間刻み0.2秒

各センサー位置の水素濃度変化

ダクトモデル実験装置写真

まとめ

- 水素は漏洩すると entrainmentによるよりも、密度差に起因する振動で混合し、水素濃度が低下する。非定常の3次元流れ。
- 燃焼下限近傍の水素濃度の領域が広い。
- 手持ちのCFDで解析可能

妥当性は井上雅弘(地球資源システム工学)の実験データ(福岡水素戦略会議支援)で検証する。

使用する解析コードで精度が異なるので、実用にあたっては要求される精度の考慮が必要