「福岡水素エネルギー戦略会議 研究開発支援事業」

固体酸化物形燃料電池(SOFC)の自己運転診断制御法による 安全確保および最適制御による性能向上に関する研究

TOTO 🛛 💥 九州大学

研究開発チーム構成

《学》 九州大学大学院工学研究院

《産》 TOTO株式会社総合研究所

報告者

中島裕典

高温運転の固体酸化物形燃料電池

SOFC 🔿 高効率な発電デバイスとして期待

自己運転診断制御法 ・安定した連続運転 ・異常検知による運転条件変更や緊急停止等の安全措置 ・最適運転制御による高効率運転

発電時の運転状態の診断 ^{過電圧解析} 診断法の確立 性能向上のためのセル運転条件 および設計指針

九州大学

тото

SOFCリアルタイム自己診断法の開発(1)

SOFCにおいて種々の運転状態における交流インピーダ ンス解析により,燃料電池に生じる電圧ロスである活性化 過電圧と濃度過電圧に対応するインピーダンスの分離計 測を行って,活性化過電圧と濃度過電圧を高精度で分離 して解析し,過電圧発生メカニズムを考察した.この知見 に基づき,交流インピーダンス解析により,運転状態を示 す特徴的なパラメーターを検討した.

□ IV測定

- SOFCの性能評価
- 交流インピーダンス解析の精度確認

□ 交流インピーダンス法

■ 過電圧解析

運転状態の変化に対応した等価回路の各抵抗, 容量値の変化傾向

運転状態の診断

燃料(H₂+N₂) Potentio Galvano Stat **FRA** $\langle \rangle$ 参照極 (Pt wire) 空気+窒素

実験条件

温度	700,600,550
水素流量 cc/min	40,80,120
窒素流量 cc/min	40,80,120,160
空気流量 cc/min	1000,333,200,100
窒素流量 cc/min	0,667,800,900

カソード		空気流量						
		1000	333	200	100			
窒素 流量	0							
	667							
	800							
	900							

тото

5

逃 九州大学

アノード,カソードインピーダンス解析

インピーダンススペクトル H2 分圧依存性

Comparison of impedance spectra under different H_2/N_2 mixing ratio in the anode at (a) 0.067 and (b) 0.505 A/cm².

低周波数側円弧が大きく変化 高周波数側円弧は変化が小さい

🔷 低周波数側円弧がアノード極の挙動を示している

インピーダンス解析

 η_{pol} :各過電圧(V) R_{pol} :各部抵抗(Ω cm²) i:電流密度(A/cm²)

тото

👑 九州大学

インピーダンス解析結果

IV測定-インピーダンス解析 比較

九州大学 10

インピーダンス解析-水素流量変化

インピーダンス解析-水素流量変化

出力特性

アノード過電圧分離

TOTO 🖑 九州大学 14

結論

ロインピーダンススペクトルの周波数領域の違いから、アノード、カソード個別過電圧解析が可能 ・診断法開発への指針・最適運転制御への指針

A条件における結果から出力電圧および等価回路パラメ ーターの変化傾向が得られた

		V_{cell}	R_{IR}	R_{c}	R_{a}	C _c	C _a
Cell temperature	✦	+		+		+	+
Hydrogen partial pressure	♦	•	I	I	•		+
Anode flow rate	♦	+	Ι	Ι	4	Ι	-
Oxygen partial pressure	♦	٠					

TOTO 🖑 九州大学 15

□ 診断フローチャート例

 ・アノード,カソード個別過電圧解析に基づき,各パラメーターと 運転状態要素との関連付けができた
・診断パラメーターの変化傾向に基づく診断法の可能性が明ら かになった

16

九州大学

SOFCリアルタイム自己診断法の評価(2)

これまで開発してきた携帯型のSOFC向けセルを, リアルタイム自己診断法の研究に供試した.開発 されたリアルタイム自己診断法に対し,実用システ ムへの実装の観点から評価を行い,重大事故防 止や運転制御の最適化の可能性を検討した.

SOFCリアルタイム自己診断法の評価(2)

携帯型のSOFC向けセルのインピーダンス解析により開発したリア ルタイム自己診断法の評価を行ったところ,セル運転状態を示すパ ラメーターが得られたことから,将来のスタック診断への展開の可能 性が示された.また,SOFCの過電圧による電圧ロスの内訳が明ら かになり,セル開発及び最適運転制御法の開発に有用な知見が得 られた.

セル運転状態のパラメータを種々の運転状態に対して測定し,近似曲線により関数化

異常検知・通報,緊急停止,最適運転状態の維持が可能となる

九州大学

SOFCリアルタイム自己診断法の評価(2)

明らかになった課題

安全運転限界および性能維持限界における運転状態要素 値のデータベース化の必要性

アノード・カソード個別過電圧解析に基づいた,実用SOFC システムの運転状態診断法の高精度化および最適運転 制御法の開発

炭化水素燃料(都市ガス,LPGおよびこれらの改質ガス)運転状態における過電圧解析法および状態診断法の研究による,本診断法のSOFCシステムへの適用可能範囲の拡大

今後の展開

育成枠研究

九州大学

長期保管形SOFC災害時ライフケアシステム

21

九州大学