低合金鋼SCM440Hの長周期変動および静応力下の 水素に助長されたき裂進展挙動

近藤良之 久保田祐信 嶋田勝也 九州大学

水中の遅れ破壊に対する引張強さの影響

熱処理: 焼入れ・焼戻し焼戻し温度530~630 (JIS)

よ〈使われるのは 570 で,引張強さ1000MPa クラス

供試材料:SCM440H 低合金鋼

化学成分 (mass%)

Material	С	Si	Mn	Р	S	Ni	Cr	Мо	Cu
SCM440H	0.42	0.22	0.8	0.02	0.02	0.03	1.04	0.16	0.02

機械的性質

	Temper (K)	0.2 (MPa)	(MPa)	(%)	(%)	HV	
170	443	1450	2033	13	38	587	
530	803	1046	1151	17	63	368	
570	843	917	1036	18	67	325	-
600	873	857	983	21	67	314	
630	903	773	898	21	70	280	
650	923	714	841	23	70	268	

JIS

供試材のミクロ組織

(a) Tempered at 443K(170) (b) Tempered at 803K(530)

(c) Tempered at 843K (570) 焼戻しマルテンサイト

(d) Tempered at 873K (600) (e) Tempered at 903K (630) (f) Tempered at 923K (170

0.15mm 深さの 2次元疲労予き裂を導入した

疲労試験装置

溶液に触れない乾燥環境で2週間にわたって 連続的にカソードチャージする方法

(Electrolyte:pH2 Sulfuric acid, 174A/m², 40 days charge)

三角波応力波形

三角波応力下のき裂進展速度 *R*=0,570 tempered

き裂進展に及ぼす三角波の周期の影響 *R*=0, 570 tempered

R=0, t=0.5hのき裂進展速度

570 焼戻し材のき裂進展に及ぼす応力比の効果

Low *R* : *K* dependent

High $R: K_{max}$ dependent

三角波応力の場合のき裂破面形態 570 tempered, *R*=0.6

ストラーエーション 擬へき開破面 擬へき開破面

(a) **未チャージ材** *t*=60s, *K*_{max}=79MPam^{1/2} (b) 水素チャージ材 *t*=0.5h, *K*_{max}=50MPam^{1/2} (c) 水素チャージ材 *t*=0.5h, *K*_{max}=73MPam^{1/2}

10 µ m

急激な加速を起こす領域の破面形態

10 µ m

(a) 170 , $K_{\text{max}} = 16 \text{MPam}^{1/2}$

(c) 630 $K_{\rm max}$ =62MPam^{1/2}

(b) 530 , $K_{\rm max}$ =53MPam^{1/2}

(d) 650 , K_{max} =60 MPam^{1/2}

急激な加速を生じる焼戻し温度と応力比の条件

基準材料である570 Tempered材のき裂進展に及ぼす 保持時間の効果

570 Tempered 材の時間依存型き裂進展

いろいろな焼戻し温度材料の時間依存型き裂進展 0.5h Stress Hold

いろいろな焼戻し温度材料の時間依存型き裂進展破面

(a) 530 , K_{max} =41MPam^{1/2}

(b) **570** , $K_{\text{max}} = 73 \text{MPam}^{1/2}$


```
(c) 600 , K_{\text{max}}=83MPam<sup>1/2</sup>
```


10 µ m

(d) 630 , $K_{\rm max}$ =65MPam^{1/2}

(e) 650 , $K_{\rm max}$ =60MPam^{1/2}

低合金鋼の時間依存型き裂進展に及ぼす 焼戻し温度と材料硬さの効果

プラトーのき裂進展速度

焼戻し温度

ビッカース硬さ

SCM440Hの水素に助長されたき裂進展挙動について検討した.

- (1) き裂を電解質に触れさせないで長時間カソードチャージする方法を考案した。
- (2) 応力比,応力周期,保持時間,材料の硬さがき裂進展に及ぼす効果を調べた. 水素チャージ材では10倍程度の加速はどの材料でも生じる. これに加えて,ある条件下では1000倍に及ぶ急激な加速が生じる.
- (3) 水素チャージ下ではき裂の破面形態は擬へき開であった。
- (4) 急激な加速はビッカース硬さが280以上の材料で生じた. ビッカース硬さ280は通常遅れ割れの限界硬さとして受け入れられている350より低い結果である. ビッカース硬さが268以下の材料ではこのような急激な加速は認められない.
- (5) 水素に助長されたき裂進展の加速を防止するためには,低強度の材料使用が 望ましい.