

水素エネルギー社会実現に向けた HYDROGENIUSの取り組み 一高圧水素ガス用ゴムシールの研究ー

2011年7月15日

西村 伸

九州大学大学院工学研究院機械工学部門

産総研 水素材料先端科学研究センター 高分子材料研究チーム

エネルギーを取り巻く事情

豊かな石油の時代が終わる

石油はあと40~50年 EPR>1.0 ➡> EPR<1.0 (EPR: Energy Profit Ratio) 日本のエネルギーの将来は?

 ● 地球温暖化 → 戦争上回る惨禍 (コロンビア大 J.E.Stiglitz)

> 京都議定書 2005年2月16日発効 日本:1990年比でCO₂6%削減目標

日本	US	EU	カナダ	ロシア
6%	7%	8%	6%	0%

▶ 2001年離脱

平成 12 年現在(ただし、ウランは平成9年、アルミ ニウムは平成 11年)

残余年数=埋蔵量/生産量

資料:BP Amoco『Statistical Review of World Energy 2001』、OECD/NEA-IAEA、Mineral Commodity Summaries 2001(一部 2000)、 World Metal Statistics 2001 より環境省作成

> 主要なエネルギー資源・ 鉱物資源の残余年数

独立行政法人 **產業技術総合研究所**

本田技術研究所作成 2009,2

CO₂の排出に関して、各分野で排出されているが、 輸送関連約23%、内自動車18.6%を占めており、 自動車分野でもCO₂の削減は必須である。

研究の背景

水素材料先端科学研究センター

HYDROGENIUS

水素エネルギー普及の阻害要因

コスト

- ・輸送、貯蔵技術のブレークスルー
- ・水素ステーションの建設・運営コストの低減
 キーワード

安全性と経済性の両立

法規制

- ・高圧ガス保安法(各種機器、保安距離等)
- 消防法 (既存STとの併用)
- ・建築基準法 (取り扱い数量)

法の再点検が必要

燃料電池車(FCEV)の課題

水素供給形態(普及初期)

①副生水素(製油所・製鉄所等の水素)を用いた「オフサイト型 水素ステーション」

②製油所石油製品を利用した「オンサイト型水素ステーション」

個別機器開発と全体調和

個別機器の技術開発とともに、全体システムとしての開発を

AIST 燃料電池自動車・水素ステーションの将来シナリオ

水素材料先端科学研究センタ HYDROGENILS

(燃料電池実用化推進協議会, 2008年7月)

FCVと水素ステーションの普及に向けたシナリオ

FCCJ(燃料電池実用化推進協議会):民間企業(および関係団体)より構成され、燃料電池の実用化と普及に向けた検討、政策提言等を行っている。

水素エネルギー社会実現に不可欠な、水素を長時間安全に利用するための科学的な知見の確立

PAIST

水素材料先端科学研究センターの特徴

水素材料先端科学研究センターの特徴 ①産総研の大学内型研究センター ←産総研・九州大学の包括連携協定 1.九州大学と研究資源(設備・研究者・予算)を 融合した全面的な連携 人材の相互利用・設備の相互利用・ 予算使用の便宜など一体的運営 九州大学伊都キャンパス内に新実験棟 2.福岡西事業所としての機能を併せもつ

福岡市の西端 九州大学の新キャンパス内に研究センターを設立

②NEDO水素先端科学基礎研究事業の集中実施機関

1.高圧での水素物性の研究などの基礎的研究から、高圧水素環境下での 材料特性研究など広範な領域を伊都キャンパスでカバー

2.センター長(九州大学副学長・理事)による、研究の一括集中管理

水素材料先端科学研究センタ

平成18年5月1日 九州大学·產総研包括連携協定締結

実験棟HY10棟

独立行政法人產業技術総合研究所

これまでに得られた成果

・水素脆化のメカニズムは、脆性破壊ではなく、ミクロな延性破壊であることを示す証拠を提示

 水素が存在すると疲労き裂の進展速度が、負荷の速度により大きな 影響を受けることを発見

HYDROGENIUS	 ・水素は全ての材料の強度に影響 ・水素脆化のメカニズムを理解すれば安全なもの づくりが可能
産業界の要望	HYDROGENIUSの成果をもとに合理的設計法 を確立することによって、安全性が担保された安 価な材料を使いたい

例示基準とは?

① 例示基準に従う場合は、法令に定める技術的要件に適合すると判断 ② 例示基準に従わない場合は、法令に定める技術的要件に照らして安全性等に問題 ないか、事業者が個別に証明する義務を負う

現実的には、例示基準に適合しない材料を使えない

燃料電池車以外でもSUS316Lの使用が拡大

・愛・地球博水素ステーションにおいて、SUS316L製充填ホースの水素漏れ事故発生 ・HYDROGENIUSの調査により、水素脆化の証拠が判明

法規制緩和を見据えた技術開発

国際標準化に向けた戦略的取組み

- 各国の熾烈な開発競争が続く中、科学的に誤った情報(例:格子脆化説)に基づいた規格や評価方法が国際標準とされないよう、情報発信の強化が必要
- ・国内規格と国際標準の整合を目指すことが必要
- ・国内メーカーが不当な不利益を被らないための戦略
 的な対応が必要

<u>Prof. Petros Sofronis</u> University of Illinois HYDROGENIUS客員研究員

AIST Rubber in Hydrogen Energy System

Rubber O-rings are used for hydrogen seals in hydrogen energy system.

ゴム材料は高圧ガスに曝された場合、気泡(ブリスタ)が発生し、 Crack と裂が進展することがある。

⇒ ブリスタ破壊現象

ブリスタ破壊に関するこれまでの研究例

【曝露条件】

- ・ガス種 : CO₂, N₂, Ar etc.
- ・圧力 : ~70 MPa.
- ・ゴム材料 : NBR, EPDM, FKM, VMQ etc.

【ブリスタ破壊の特徴】

- ・曝露圧力が高いほど、ブリスタ破壊は激しくなる
- 減圧速度が速いほど、ブリスタ破壊は激しくなる
- ・ ガス種によりブリスタ破壊様式が異なる

(1) S. Zakaria, and B. J. Briscoe, "Why rubber explodes", Chemtech, Vol.20, Aug, pp. 492–495 (1990).

(2) A. Stevenson, and G. Morgan, "Fracture of Elastomers by Gas Decompression", Rubber Chemistry and Technology, Vol. 68, pp. 197 – 211 (1995).

(3) B. J. Briscoe, T. Savvas, and C. T. Kelly, "Explosive Decompression Failure of Rubbers: A Review of the Origins of Pneumatic Stress Induced Rupture in Elastomers", Rubber Chemistry and Technology, Vol. 67, pp. 384 – 416 (1994).

Silicon rubber exposed to 40 MPa CO_2 gas.⁽¹⁾

水素によるOリングの破壊

供試材料

水素材料先端科学研究センター

	ITEMS		EPDM-	EPDM-	EPDM-	NBR-NF	NBR-	NBR-	NBR-SC
		NF	CB50	<u>CB25</u>	<u>SC</u>		CB50	<u>CB25</u>	
	EPDM(ESPRENE 505)	100	100	100	100	-	-	-	-
	NBR(NIPOL 1042)	-	-	-	-	100	100	100	100
	Stearic Acid	1	1	1	1	1	1	1	1
Pubbor	Zinc oxide	5	5	5	5	5	5	5	5
Rubbel	Sulfur	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
	MBTS	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
	TMTD	0.7	0.7	0.7	0.7	0.5	0.5	0.5	0.5
	ZnEDC	0.7	0.7	0.7	0.7	-	-	-	-
Fillor	CB:HAF Black (ASTM N330)	-	50	25	-	-	50	25	-
	SC:NIPSIL VN3	-	-	-	60	-	-	-	60
phr (per hundred rubber: g/Rubbe					ber100g)				
$\left(CH_{2}-CH_{2}\right)-\left(CH_{2}-CH_{n}\right)-\left(CH_{2}$).				
Ethy	/lene Propylene ^{CH2-}				Acrv	onitoril	Butadi	ene	
Rub	ber (EPDM)	Rubber (NBR)							
S-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s		$H_{3}C \qquad \begin{array}{c} S \qquad S \\ \parallel \\ N - C - S - S - C - N \\ H_{3}C - N \\ H_{3}$				C_2H_5 $N_{C_2H_5}$ S_2n_{S} C_2H_5 C_2H_5 C_2H_5			C₂H₅ C₂H₅
2,2'-Benzothiazvl		Bis(dimethylthiocarbamoyl)			noyl)	Zinc Diethylthiocarbamate			
Disulfide (MBTS)		Disulfide (TMTD)			- /	(ZnED	C)		

独立行政法人產業技術総合研究所

供試材	フィラー	ゴム硬度	密度 (g/cm ³)	破断歪み (%)	破断応力 (MPa)	弾性率 (MPa)
NBR-NF	なし	A 52	1. 035	325	2.0	2.9
NBR-CB50	HAF 50phr	A 77	1. 191	295	23. 9	15. 3
NBR-CB25	HAF 25phr	A 67	1. 123	375	14. 2	6. 3
NBR-SC60	シリカ 60phr	A 85	1. 248	650	28.0	30. 1
EPDM-NF	なし	A 54	0. 928	135	1.3	3. 2
EPDM-CB50	HAF 50phr	A 79	1. 093	265	19.4	18. 1
EPDM-CB25	HAF 25phr	A 68	1.016	285	10. 6	5.8
EPDM-SC60	シリカ 60phr	A 91	1. 136	263	12.6	43. 7

独立行政法人 **產業技術総合研究所**

ブリスタ破壊の観察方法

〇円柱試験片を10MPa、30°Cの水素中で65時間曝露 〇水素曝露後、形状および体積変化を測定 〇試験片を中央部を切断し、光学顕微鏡およびSEMにより 断面のき裂発生状況を観察

Specimen for blister test.

Matoriale	Exposed to hydrogen gas (100MPa) at 30 °C for 65 h.						
Materials	1 h	4 h	8 h	11 h			
EPDM-NF			Y/				
EPDM-CB25							
EPDM-SC60							

独立行政法人 **產業技術総合研究所**

10 mm

曝露時の水素量測定

水素材料先端科学研究センタ

〇水素曝露後、試験片を温度30 ℃の昇温脱離ガス分析装置(TDA, Thermal Desorption Gas Analysis)中で定温に保ち、水素放出量の経時変化をガス クロ により測定

○水素放出プロファイルを飽和水素量と拡散係数を未知定数とし下式で近似 ⇒水素放出が早いため、飽和水素量を外挿して推定.

(5) A. Demarez, A. G. Hock, F. A. Meunier, "Diffusion of Hydrogen in Mild Steel", Acta Metallurgica, Vol. 2, pp. 214 – 223 (1954).

フィラーが水素脱離に及ぼす影響

水素材料先端科学研究センター

HYDROGENILS

飽和水素量測定結果

水素材料先端科学研究センター

○材料の種類およびCB添加の有無によらず、飽和水素量は圧力に比例
 ⇒水素量はヘンリーの法則に従い、ゴム材料中に水素分子の状態で侵入
 OCBはEPDMとNBRの飽和水素量を増大させる

ブリスタ発生過程

表材料先端科学研究センター HYDROGENILS

- ・気泡を内圧 Πを受ける球状の穴と見なす
- 第1近似として、気泡内面での最大発生応力 σ_{θ,max} が ゴム材料の破断応力 σ₇ を超えたときブリスタが発生 すると判断(寸法効果は考慮しない)
- ・水素量 C_{H0} は内圧 П に比例すると仮定

ブリスタ破壊とゴム物性の関係

・ブリスタ破壊は、ゴム材料の水素量 C_{H0} が少なくなるほど、および
 弾性率 E や破断応力 σ_T などの引張特性が向上するほど、軽微になる

HYDROGENILS

ゴム材料高圧水素耐久試験機外観

試験機設置時の供試体ホルダー

PAIST

水素シール破壊の要因

独立行政法人產業技術総合研究所

制御因子

HYDROGENILS

高圧水素ガス雰囲気下で使用されるゴムシール材料の耐久性能評価において、高圧水素ガスシール使用 環境条件から2水準の制御因子A、3水準の制御因子B~H を取り上げ、それぞれの水準1~3に割りつけ た

	制御因子	水準1	水準2	水準3
А	下限圧力:P _L (MPa)	8	1	-
В	ゴム材料(Hs 80)	EPDM	VMQ	HNBR
С	雰囲気温度 (℃)	100	30	0
D	充填率 (%)	86	77	67
E	上限圧力 (MPa)	90	35	10
F	上限圧力保持時間 (sec.)	120	60	30
G	下限圧力保持時間(sec.)	120	60	30
Н	減圧時間 (sec.)	60	10	3

要因効果図

水素材料先端科学研究センタ

独立行政法人產業技術総合研究所

Oリングの破壊モード

EPDM(Hs70) :

座屈破壊

EPDM(Hs70) : $H_2 \times 70MPa \times 100^{\circ}C \times 3hrs$.

H₂×35MPa×100℃×15hrs. Oリングの破壊はブリスタによる破壊のみならず,ゴム材料の膨潤に起因するは み出し破壊と座屈破壊も発生する.

独立行政法人產業技術総合研究所

有限要素法によるOリングの解析

水素材料先端科学研究センタ

HYDROGENILS

・圧力が高くなるほど、Oリングが横方向に膨らむ.

・加圧中では圧力70 MPa以上でOリングとジグが接触.減圧後では圧力35 MPa 以上でOリングとジグが接触(はみ出しによる破壊).

破壊モード	原因	対策
ブリスタ破壊 拡大 加加 1 mm 0.5mm EPDM(Hs70) : H ₂ × 35MPa × 100°C × 15hrs.	高圧水素曝露時に ゴム材料中に溶解 した水素が減圧に 伴い気化することに より気泡発生からき 裂進展に至る.	 (Oリング用ゴム材料の対策) ・水素溶解量の低いゴム配合の開発 ・硬度が高く、破壊強度が大きい ゴム配合の開発 ・充填材のカーボンブラックは補強効果 が高いが水素吸着によりゴムの水素 溶解量が増大する、補強効果が高く、 水素吸着が小さい充填材を探索
はみ出し破壊 していたいでは、 していたいでは、 していたいでは、 していたいで、 していでいで、 していでいで、 していでいで、 していでいで、 していでいで、 していでいで、 していでいで、 していで、 していでいで、 していでいで、 していでいで、 していでいで、 していでいでいで、 していでいでいでいで、 していでいでいで、 していでいで、 していでいで、 していでいで、 し	水素による膨潤の ため、ゴム材料の 常態値で設計され たOリング溝の断面 積を越える体積増 加によりはみ出し破 壊に至る.	 (Oリング用ゴム材料の対策) ・水素溶解量の低いゴム配合の開発 ・膨潤による体積増加率の低いゴム 配合の開発 ・水素溶解量が低いゴム材料の探索 (Oリング溝設計の対策) ・使用環境(温度、水素圧力など)に
座屈破壊 EPDM(Hs70): $H_2 \times 70$ MPa $\times 100^{\circ}$ C $\times 3$ hrs.	水素による膨潤の ため, Oリングの円 周方向に体積膨張 が発生し, 座屈発 生に至る.	おけるゴム材料の体積増加を前提と した充填率設計 ・使用環境(温度,水素圧力など)に おけるゴム材料のはみ出し破壊, 座屈破壊の限界値を把握

まとめ

九州大学伊都キャンパス内に、水素材料研究のナショナルラボとして、産業技術 総合研究所水素材料先端科学研究センターを設立し、NED0「水素先端科学基礎研 究事業」として、水素エネルギー社会実現に不可欠な、水素を長時間安全に貯蔵 、輸送、利用するための科学的な知見の確立に関する研究開発を推進している.

- 高圧水素ガスによるブリスタへの耐性に優れたゴム材料の設計指針として、高い ブリスタ発生内圧を示し、かつ水素溶解量が小さいゴム材料が望ましいことがわ かった.
- 高圧水素シール用0リングについて、高圧水素耐久試験機を用いたL18直交実験を
 実施した結果、0リングの破断強度低下に対して、材料、温度、充填率、減圧時間の影響が大きいことが判明した。
- ・ 0リングの破壊モードとして、ブリスタ破壊の他、はみ出しおよび座屈による破壊 が発生していることが判明した、はみ出し、座屈による破壊の原因は水素溶解に よるゴム材料の膨潤に伴う体積増加であることが示唆された。

謝辞

本研究成果の一部は、NEDO技術開発機構の水素材料先端科学基礎研究事業(平成 18年度~平成24年度)の一環として行ったものである。ゴム試験片の作製にご協 カいただきましたNOK株式会社殿、高石工業株式会社殿に感謝致します。

※本資料に関する、転送、複写、転載、引用、翻訳、要約、改変その他の方法により、私的利用の範囲を超えて使用することはできません。