

工業的 水素製造法						
	水素製造法	原料	エネルギー	評価		
	メタン改質法	水+メタン	熱	安価(世界の90%を生産) 炭酸ガス排出		
既存技	アルカリ水電解 2K*+2H2O+2e=2KOH 2OH=H2O+1/2O2+2e	H+H ₂ 水 * (KOH水溶液)	電気	電力が高価 炭酸ガス排出なし		
術	副生水素 ・製鉄 C+H ₂ O=CO+H ・ソーダ工業 (NaCI電気分解	H ₂ 石炭 ¥)海水	熱電気	直近(2020-2030年ごろまで) の需要に対応可能 炭酸ガス排出		
	石炭ガス化法+CCS*	水+石炭	熱 (化石燃料)	大規模集中型		
	メタン改質法+CCS*	水+メタン		低員灰糸焼米初 炭酸ガス排出なし		
将来	 熱化学法 ハイブリッド法 高温水蒸気電気分解法 	ж	熱、電気 (原子力)	大規模集中型 放射性廃棄物 炭酸ガス排出なし		
技術	放射線分解法 (G値として整理	e) 水	放射線 (原子力)	放射性廃棄物の有効利用 小規模 炭酸ガス排出なし		
	 熱化学法 ・電気分解等 	ж	熱、電気 (自然エネルギー:太 陽光、バイオマス等)	小規模分散型 炭酸ガス排出なし		

熱化学法による代表的水素製造法					
製造法	概要	備考考			
Znプロセス	亜鉛(Zn)を循環物質として使用。 ①H ₂ 0+ZnZnO+H ₂ (2ZnOZn+0.50 ₂	 ・②の反応に約2000°Cの熱が必要 →太陽熱を熱源として研究開発 ・固気の反応→バッジ方式 			
ISプロセス	ヨウ素(I)と硫黄(S)を循環物質として使用。 ①1₂+SO2+2H2O→2H1+H2SO4 ②2H1→1₂+H2 ③H2SO4→SO2+H2O+0.5O2	 ・②及び③の反応に約400~900℃の熱が 必要→高温ガス炉に適用可能 ・気液の反応→連続循環方式 			
UT-3プロセス	カルシウム(Ca)、鉄(Fe)、臭素(Br)を循環物質とし て使用。 (1)CaBr ₂ +H ₂ O→CaO+2HBr (2)CaO+Br ₂ →CaBr ₂ +0.50 ₂ (3)Fe ₃ O ₄ +3HBr→3FeBr ₂ +4H ₂ O+Br ₂ (4)3FeBr ₂ +4H ₂ O→Fe ₃ O ₄ +6HBr+H ₂	 ・2)~4の反応に約300~800℃の熱が必要一高温ガス炉に適用可能 ・固気の反応ーバッジ方式 			
Westing- House プロセス	硫黄(S)を循環物質として使用。 ①SO ₂ +2H ₂ O→H ₂ SO ₄ +H ₂ (2)H ₂ SO ₄ →SO ₂ +H ₂ O+0.5O ₂	 ①の反応に電気を使用 ・2の反応に約900°の熱が必要 →高温ガス炉に適用可能 ・気液の反応→連続循環方式 			

 $\Delta H_0 = \Delta H_1 + \Delta H_2 + \Delta H_3 - \Delta H_4$

H₂ permeable membrane tube supplied with CH₄ Methods to produce H₂ from CH₄ • Water-reforming $CH_4 + H_2O = CO + 3H_2$ Need catalyst, need to supply heat, 800°C • Partial oxidation Reaction mechanism $CH_4 + \frac{1}{2}O_2 = CO + 2H_2$ Overall reaction (Texaco method) No catalyst, no need to supply heat 1300°C Prettre(1946) Complete oxidation 3CH₄ $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O \xrightarrow{\downarrow} 4(CO + 2H_2)$ Two-step reaction of CH_4 Hickman(1993) $(1/2)O_{2}$ $CH_4 \rightarrow C + 4H^* \stackrel{\bullet}{\rightarrow} CO + 2H_2$ Direct catalytic oxidation of CH₄ use catalyst, 700°C Catalyst bed → H₂, CO, H₂O, CO₂, CH₄, O₂ Study effects of flow rate, CH /O, ratio and temperature on conversion ratio

