Appendix

E(供給安定性)···現在の日本の水素生産能力

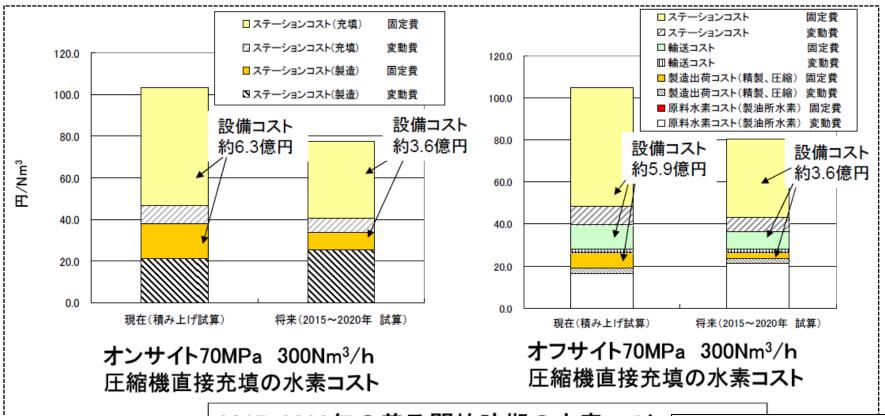
当面の水素供給量には問題なし(直近の調査でも、製油所だけで「目的生産」 可能な43億Nm3(FCV460万台分程度)の「水素製造余力*」あり)

*「副生水素」は目的生産水素を補完するものとして、地産地消エネルギーや 廃棄物有効利用の観点から活用

	製造方法			生産能力				
関連業界	医泌	製造の為の	プロセス	現状余力	将来	副生	目的物	
	原料	エネルギー		億Nm3/年				
目的生産								
石油	石油	石油	改質	(47)				
アンモニア	石炭、石油、天然ガス等から様々な方法で製造 6				=n./±±+c=n.			
ガス	天然ガス	天然ガス	改質	設備無し	設備新設 増強次第	_	水素	
電力	水	原子力	熱分解					
特定業界無し	水	(電力)	電気分解					
鉄鋼	石炭	石炭	乾留	12		12	コークス	
石油化学	石油	石油	熱分解	- <u>10</u> 6		10	エチレン	
ソーダ	水	(電力)	電気分解			6	苛性ソーダ	

出典:產業競争力懇談会(COCN)報告書2009年3月

〈参考:2010年の製油所の水素バランス〉


供給	接触改質	水素製造装置 (目的生産) 製造 余力		合計
	85	57	43	185

需要	ガソリン・灯軽油 脱硫装置	重油脱硫 装置	水素化分解 装置	合計
	53	70	19	142

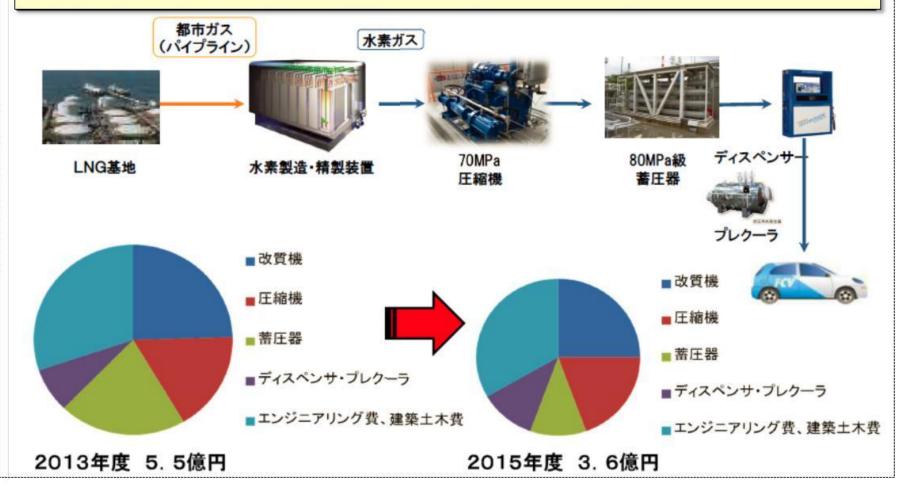
出典:石油エネルギー技術センター 平成25年度技術開発・調査事業成果発表会(2013/7/11)調査報告資料よりHySUTで計算

単位:億Nm3/年

E(経済性)···水素コスト試算例

2015-2020年の普及開始時期の水素コスト

= 80円/Nm³ (900円/kg)

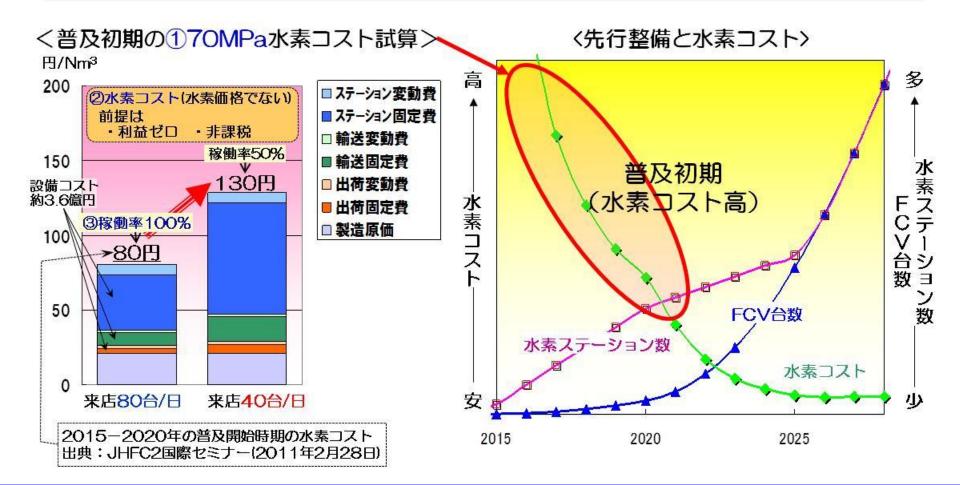

ランニングコスト ガソリン車と同等が目標

- ・オンサイト型、オフサイト型共に 固定費コストの大幅な低下
- ・変動費は、原料費コスト上昇の可能性

出典:水素・燃料電池実証プロジェクト(JHFC2)2011年2月28日JHFC国際セミナー[NEDO助成事業の成果資料]

E(経済性)・・・水素供給設備の低コスト化

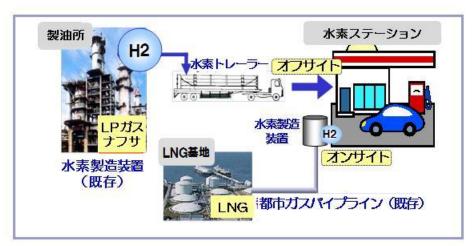
- ●供給設備のコストは2013年度5.5億円から、2015年度3.6億円を目標。
- ●規制緩和、量産効果、技術開発の組合せとパッケージ化(コンテナ内に収納)、機器の標 準化によって、毎年15~20%程度のコストが下がるものと想定。



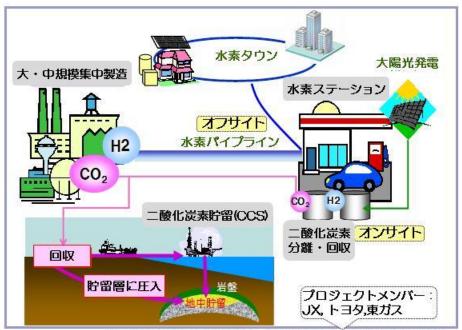
出典: 2013/9/19 電気化学会 燃料電池研究会30周年記念第120回セミナー 経済産業省講演資料

E(経済性)···普及初期をどう乗り越えるか

ステーションをクルマより先行して整備する普及初期は FCV台数が少ない(お客様が少ない)ため、実質の水素コストが上がってしまう。


→ 普及のために乗り越えなければならないハードル。

E(環境適合性)・・・水素製造時のCO2発生の削減


2015~2025年 水素普及期

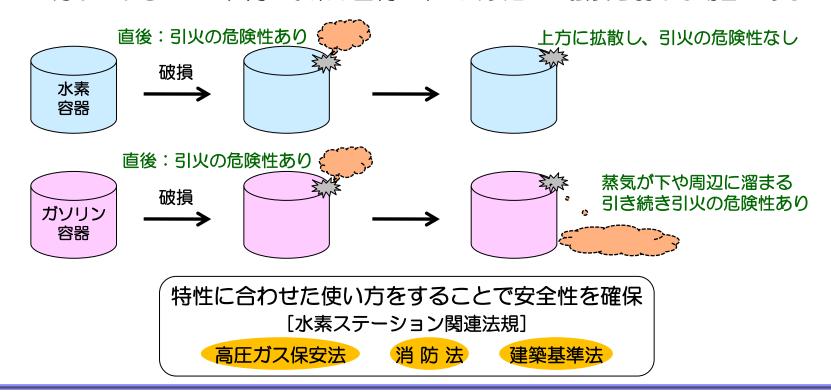
- ・既存の製油所水素製造装置を利用し、 水素製造・輸送・ステーション供給
- ・既存のガス供給インフラを利用し、 天然ガス輸送・ステーションでの 水素製造·供給
 - ⇒ 安定供給とコスト削減を実現

2025年~「低炭素化」移行期

- ・集中製造へ順次集約、水素パイプライ ンも導入し、水素ネットワークに展開
- ・太陽光発電やCCS (CO2の回収・貯留) との組合せ
 - ⇒「低炭素型水素供給」に移行

出典:產業競爭力懇談会(COCN)報告書2009年3月

S(安全性)・・・水素の特性


正しい使い方をすれば、既存燃料と同様に安全 間違った使い方をすれば、既存燃料と同様に危険

必要なのは

正しい理解と 正しい使い方

- ・ 燃料(水素)・空気・火種の三つがそろうと燃焼・爆発の可能性あり
- ・漏れた場合も、燃焼下限以下になるのが早く、引火の危険性は低い
- ・ 周辺や地面付近に溜まらないため、着火しても燃え広がらずに燃え尽きる
- ・ 燃焼・爆発するのは、密閉された空間で大量に漏れ、そこに火種があった場合
- ・ 分子が小さいので、高圧水素は金属の中に入り込んで強度を弱める場合がある

S(安全性)・・・水素ステーションの主な安全対策

基本的な考え

- 水素を漏らさない
- ▶ 水素が漏れても溜まらない
- ●漏れたら早期に検知し、拡大を防ぐ
- 漏れた水素に火がつかない
- 万が一、火災等が起こっても周囲に影響を及ぼさない又は影響を軽減する

水素受入設備

- ●耐震設計
 ●冷却設備
- ●ガス検知器、自動停止装置
- ●火災検知器、散水設備

圧縮機

水素 ガス

- ●耐震設計
- ガス検知器、異常検知器、自動停止装置
- 換気設備

管理体制

- 有資格者による保安管理
- ●●定期点検・検査

水素製造装置

- ●耐震設計
- ●ガス検知器、異常検知装置、 自動停止装置
- ●換気設備
- 鋼鉄製ケーシング

蓄圧器

- ●耐震設計、フレーム構造●冷却設備
- ●リークビフォー バースト設計
- ガス検知器、自動停止装置
- 緊急遮断弁
- ●安全弁、圧カリリーフ弁
- ●火災検知器、散水設備

ディスペンサー

- 緊急離脱カプラー
- ●充填条件制御機能
- ▶●ガス検知器、自動停止装置
- ●水素が滞留しない屋根構造
- 火災検知器、散水設備

