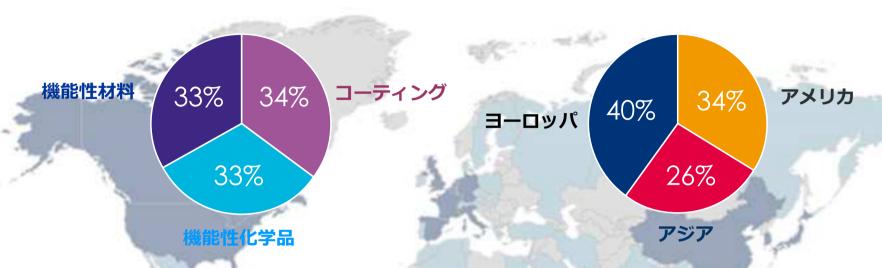


福岡水素エネルギー戦略会議 水素高分子材料研究分科会

植物由来ポリアミド11の 高圧水素機器への用途展開

2015年 10 月 14 日 福岡マリンメッセ

アルケマ株式会社 京都テクニカルセンター 宮保 淳



本日の講演内容

- アルケマについて
- 植物由来ポリアミド11 とは?
- アルケマのポリアミド製品群と用途
- ポリアミド11の自動車用途への展開
- ポリアミド11の高圧水素機器への用途展開
- まとめ

アルケマ 高付加価値品に特化するフランスの総合化学会社

- フランス パリに本社を持つ総合化学会社
- 2006年5月にフランスの石油メジャー TOTAL からスピンオフし上場(旧社名 アトフィナ)
- 2014年度売上高 75 億ユーロ(約 1兆円)
- 社員数 19,000 人
- 全13研究所 (フランス (7) アメリカ (3) アジア (3))、研究員 1,500 人、売上高の2.5%を投資
- 主要3ブロック

機能性材料: ポリアミド、フッ素樹脂、機能性接着剤、有機過酸化物

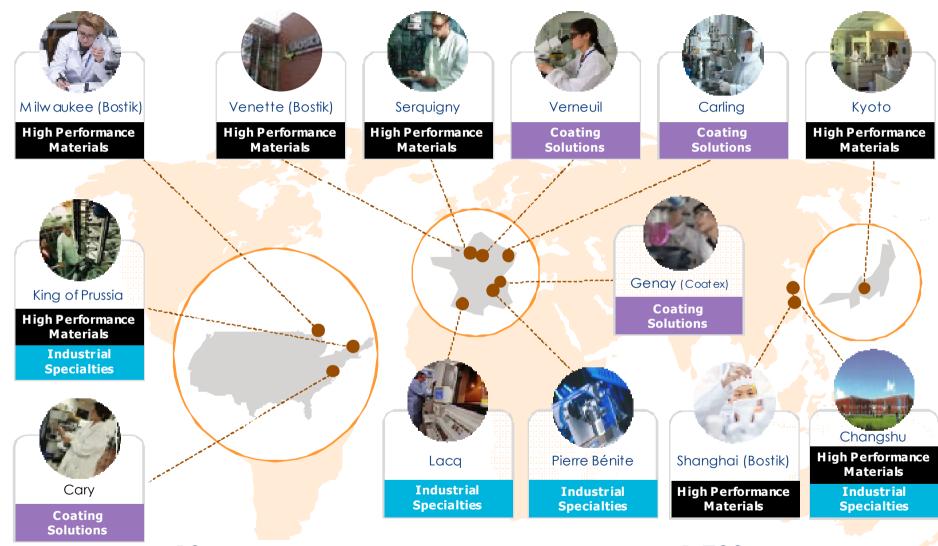
機能性化学品: 硫黄化学品、フッ素化学品、過酸化水素、PMMA 他

コーティングソルーション: アクリルモノマー、特殊コーティング材料

グローバルシェア3位以内の製品に特化

POSITION			MAIN PLAYER	?S		
#1	SPECIALTY POLYAMIDES	•	© EADÜİK	E M\$		
#1	PVDF	•	SOLVAY			
	THIOCHEMICALS	•	Chevron Phillips			
#3	ORGANIC PEROXIDES	•	AhaoNober	UNITED IN TIATORS		
	FLUOROGASES	•		Honeywell		
	PMMA	•	© €AÖÜİR	A VII SURISHI		
	HYDROGEN PEROXIDE	•	SOLVAY,	© ENDUIK		
#3	ACRYLIC MONOMERS	•	D-BASF	√ Dow	NIBOON SHUKLIKU	
#3	COATINGS	•	D-BASF	DOW		
#3	ADHESIVES	•	(lenkel)	🚅 H.B. Fuller	A.	

High Performance Materials


Industrial **Specialties**

Coating Solutions

Among the first 3 leaders (WW) on 90% of sales

アルケマの 13 研究開発拠点

13 research centers

2.5% of sales allocated to R&D

1,700 researchers

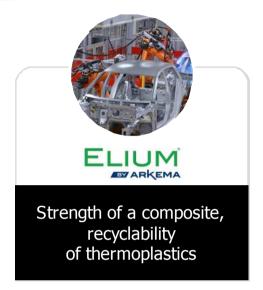
技術プラットフォーム

New energies

Renewable raw materials

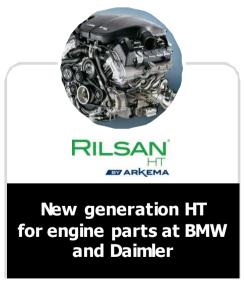
Solutions for electronics

Water treatment


Lighter materials

Arkema with only 3 other French industrial group ranked in the Top 100 Global Innovators for the 4th consecutive year, 200 patents filed on average every year

アルケマの研究開発 2014年の成果



2015年の注力研究開発分野

New transparent and rigid biosourced polyamides for smartphones and tablets

Development of the Kepstan® PEKK "polymer of the extreme"

New generation flame-retardant adhesives for aircraft interior

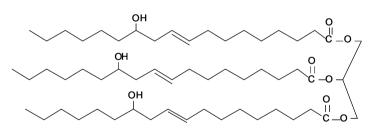
Genius-Fix:
high green
strength, very fast
cure grab adhesive

Hexible electronics

3D printing

New hydrophilic membranes for water treatment

植物由来ポリアミド11とは


原料としてのヒマシ油 ヒマシ油からポリマーまで ポリアミド11の歴史 その他のバイオポリアミド

ヒマシ油 注目される多用途な非可食油脂

- 痩せた土地でも育つアフリカ原産のドウダイグサ科の植物 (Ricinus communis L.)
- ヒマシ(種子)として156万トン産出(2010-2011予想)
- インドが世界最大の生産量(シェア 70-80%)
- ヒマシ(種子)の中に約 50wt% のヒマシ油を含む
- ヒマシ油の約90%がリシノール酸トリグリセリド
- 水酸基 (-OH) を含む特異な不飽和油脂
- 多彩な化学変換が可能で多くの用途がある(下剤としても使用)

リシノール酸トリグリセリド

ポリアミド11のモノマーは、非可食油脂から合成されるため、サトウキビやトウ モロコシに見られる食糧との競合とは無縁である

ポリアミド11 アルケマ植物由来エンプラの核

炭素数18のヒマシ油を C11 と C7 にクラッキングすることによりポリアミド 11のモノマーが得られる一方、副生する C7 成分も有効に活用される

ポリアミド11の歴史 古くて新しいポリマー

参照: プラスチックスエージ、57(4), 120 (2011)

開発スタート

繊維用途の降盛

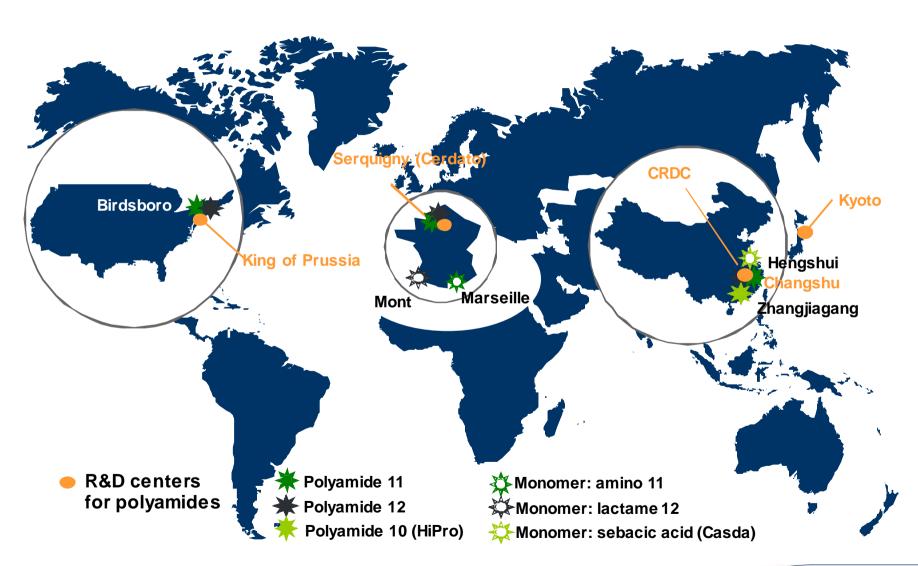
現在の基幹ビジネススタート

植物由来樹脂としての新規用途開拓

1930 1940 **1950 1960 1970 1980 1990 2000 2010**

- ポリアミド66と同時期に開発がスタートした歴史あるエンジニアリングプラスチック
- 1980年代にはエンプラとしての確固たる地位を確立
- 2000年以降に植物由来樹脂としての低環境負荷性が注目され始めた

ポリアミド11の場合、植物由来樹脂に機能を付与したのではなく、機能性樹脂(エンプラ)が植物由来原料を用いていたと考えるべき



アルケマのポリアミド製品群と用途

アルケマのポリアミド製造拠点

アルケマのポリアミド製品群幅広い用途での実績

Risan	rilsanio [™]	Rilsan	ORGALLOY®	pebax	Rilsan	. platamid®	Orgasol®
	ポリアミド12	透明	ポリアミド-	Rnew ポリアミド	粉体塗装用	共重合	ポリアミド
		ポリアミド	ポリオレフィン アロイ	エラストマー	ポリアミド11	ポリアミド	微粉末
植物由来	石油由来	植物由来	石油由来	植物由来	植物由来	植物由来	石油由来
自動車	トラック	光学用途	エアコンホース	スポーツ	金属塗装	接着芯地	化粧品
石油・ガス	自動車	電気・電子	自動車	自動車	水道管	自動車	塗料添加剤
15 Arkema F	roperty – Duplication	nprohibited					SSA SEMA